Copied to
clipboard

G = C2xC42:C22order 128 = 27

Direct product of C2 and C42:C22

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2xC42:C22, C42:5C23, C24.99D4, M4(2):12C23, C4wrC2:15C22, (C22xD4):29C4, C4.11(C23xC4), (C22xQ8):23C4, (C2xC4).181C24, (C2xC42):34C22, C4oD4.20C23, D4.22(C22xC4), C23.641(C2xD4), C4.181(C22xD4), (C22xC4).782D4, Q8.22(C22xC4), C4o(C42:C22), C22.28(C22xD4), C42:C2:76C22, C23.88(C22:C4), (C22xM4(2)):22C2, (C2xM4(2)):73C22, (C23xC4).516C22, (C22xC4).1499C23, (C2xC4wrC2):29C2, C4oD4:16(C2xC4), (C2xC4oD4):22C4, (C2xD4):51(C2xC4), (C2xQ8):42(C2xC4), C4.77(C2xC22:C4), (C2xC4).1407(C2xD4), (C2xC42:C2):43C2, (C2xC4).246(C22xC4), (C22xC4).326(C2xC4), (C22xC4oD4).22C2, C22.24(C2xC22:C4), C2.43(C22xC22:C4), (C2xC4).286(C22:C4), (C2xC4oD4).276C22, SmallGroup(128,1632)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C2xC42:C22
C1C2C4C2xC4C22xC4C23xC4C22xC4oD4 — C2xC42:C22
C1C2C4 — C2xC42:C22
C1C2xC4C23xC4 — C2xC42:C22
C1C2C2C2xC4 — C2xC42:C22

Generators and relations for C2xC42:C22
 G = < a,b,c,d,e | a2=b4=c4=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1c, ebe=bc2, cd=dc, ce=ec, de=ed >

Subgroups: 668 in 386 conjugacy classes, 172 normal (34 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C42, C42, C22:C4, C4:C4, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C24, C4wrC2, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C42:C2, C22xC8, C2xM4(2), C2xM4(2), C23xC4, C23xC4, C22xD4, C22xD4, C22xQ8, C2xC4oD4, C2xC4oD4, C2xC4wrC2, C42:C22, C2xC42:C2, C22xM4(2), C22xC4oD4, C2xC42:C22
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, C22xC4, C2xD4, C24, C2xC22:C4, C23xC4, C22xD4, C42:C22, C22xC22:C4, C2xC42:C22

Smallest permutation representation of C2xC42:C22
On 32 points
Generators in S32
(1 8)(2 5)(3 6)(4 7)(9 27)(10 28)(11 25)(12 26)(13 31)(14 32)(15 29)(16 30)(17 22)(18 23)(19 24)(20 21)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 18 27 30)(2 19 28 31)(3 20 25 32)(4 17 26 29)(5 24 10 13)(6 21 11 14)(7 22 12 15)(8 23 9 16)
(2 17)(3 25)(4 31)(5 22)(6 11)(7 13)(10 15)(12 24)(14 21)(19 26)(20 32)(28 29)
(1 27)(3 25)(6 11)(8 9)(14 21)(16 23)(18 30)(20 32)

G:=sub<Sym(32)| (1,8)(2,5)(3,6)(4,7)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,27,30)(2,19,28,31)(3,20,25,32)(4,17,26,29)(5,24,10,13)(6,21,11,14)(7,22,12,15)(8,23,9,16), (2,17)(3,25)(4,31)(5,22)(6,11)(7,13)(10,15)(12,24)(14,21)(19,26)(20,32)(28,29), (1,27)(3,25)(6,11)(8,9)(14,21)(16,23)(18,30)(20,32)>;

G:=Group( (1,8)(2,5)(3,6)(4,7)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,22)(18,23)(19,24)(20,21), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,18,27,30)(2,19,28,31)(3,20,25,32)(4,17,26,29)(5,24,10,13)(6,21,11,14)(7,22,12,15)(8,23,9,16), (2,17)(3,25)(4,31)(5,22)(6,11)(7,13)(10,15)(12,24)(14,21)(19,26)(20,32)(28,29), (1,27)(3,25)(6,11)(8,9)(14,21)(16,23)(18,30)(20,32) );

G=PermutationGroup([[(1,8),(2,5),(3,6),(4,7),(9,27),(10,28),(11,25),(12,26),(13,31),(14,32),(15,29),(16,30),(17,22),(18,23),(19,24),(20,21)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,18,27,30),(2,19,28,31),(3,20,25,32),(4,17,26,29),(5,24,10,13),(6,21,11,14),(7,22,12,15),(8,23,9,16)], [(2,17),(3,25),(4,31),(5,22),(6,11),(7,13),(10,15),(12,24),(14,21),(19,26),(20,32),(28,29)], [(1,27),(3,25),(6,11),(8,9),(14,21),(16,23),(18,30),(20,32)]])

44 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M4A4B4C4D4E···4J4K···4V8A···8H
order12222···2222244444···44···48···8
size11112···2444411112···24···44···4

44 irreducible representations

dim111111111224
type++++++++
imageC1C2C2C2C2C2C4C4C4D4D4C42:C22
kernelC2xC42:C22C2xC4wrC2C42:C22C2xC42:C2C22xM4(2)C22xC4oD4C22xD4C22xQ8C2xC4oD4C22xC4C24C2
# reps1481112212714

Matrix representation of C2xC42:C22 in GL6(F17)

1600000
0160000
001000
000100
000010
000001
,
0130000
1300000
000008
0000134
008000
0091600
,
100000
010000
004000
000400
000040
000004
,
1600000
010000
001000
0011600
0000016
0000160
,
1600000
0160000
0016000
0001600
000010
000001

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,8,9,0,0,0,0,0,16,0,0,0,13,0,0,0,0,8,4,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C2xC42:C22 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes C_2^2
% in TeX

G:=Group("C2xC4^2:C2^2");
// GroupNames label

G:=SmallGroup(128,1632);
// by ID

G=gap.SmallGroup(128,1632);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,2804,1411,172,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1*c,e*b*e=b*c^2,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<